Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters








Language
Year range
1.
International Neurourology Journal ; : S82-90, 2023.
Article in English | WPRIM | ID: wpr-1000565

ABSTRACT

Purpose@#The development of optics-based wearables for bladder volume monitoring has emerged as a significant topic in recent years. Given the innovative nature of this technology, there is currently no bladder phantom available to effectively validate these devices against more established gold standards, such as ultrasound. In this study, we showcase and demonstrate the performance of our hybrid bladder phantom by using an optical device and making comparisons with ultrasound. @*Methods@#A series of validation tests, including phantom repeatability, ultrasound scanning, and an optical test, were performed. A near-infrared optical device was utilized to conduct diffuse optical spectroscopy (DOS). Machine learning models were employed to construct predictive models of volume using optical signals. @*Results@#The size and position of an embedded balloon, serving as an analog for the bladder, were shown to be consistent when infused with 100 mL to 350 mL of water during repeatability testing. For DOS data, we present 7 types of machine learningbased models based on different optical signals. The 2 best-performing models demonstrated an average absolute volume error ranging from 12.7 mL to 19.0 mL. @*Conclusions@#In this study, we introduced a hybrid bladder phantom designed for the validation of near-infrared spectroscopy-based bladder monitoring devices in comparison with ultrasound techniques. By offering a reproducible and robust validation tool, we aim to support the advancement of next-generation optical wearables for bladder volume monitoring.

2.
International Neurourology Journal ; : S27-33, 2023.
Article in English | WPRIM | ID: wpr-1000558

ABSTRACT

Purpose@#Current guidelines recommend clean intermittent catheterization (CIC) at regular time intervals for patients with spinal cord injuries; however, many patients experience difficulties. Performing time-based CIC outside the home is a significant burden for patients. In this study, we aimed to overcome the limitations of the current guidelines by developing a digital device to monitor bladder urine volume in real-time. @*Methods@#The optode sensor is a near-infrared spectroscopy (NIRS)-based wearable device intended to be attached to the skin of the lower abdomen where the bladder is located. The sensor’s primary function is to detect changes in urine volume within the bladder. An in vitro study was conducted using a bladder phantom that mimicked the optical properties of the lower abdomen. To validate the data in the human body at the proof-of-concept level, one volunteer attached the device to the lower abdomen to measure the light intensity between the first voiding and immediately before the second voiding. @*Results@#The degree of attenuation at the maximum test volume was equivalent across experiments, and the optode sensor with multiplex measurements demonstrated robust performance for patient diversity. Moreover, the symmetric feature of the matrix was deemed a potential parameter for identifying the accuracy of sensor localization in a deep-learning model. The validated feasibility of the sensor showed almost the same results as an ultrasound scanner, which is routinely used in the clinical field. @*Conclusions@#The optode sensor of the NIRS-based wearable device can measure the urine volume in the bladder in real-time.

3.
International Neurourology Journal ; : 192-201, 2021.
Article in English | WPRIM | ID: wpr-898801

ABSTRACT

Urinary tract infections (UTIs) are the most common infectious disease and are mainly caused by Escherichia coli. In this review, we introduce the current concept of recurrent UTI (rUTI) based on recent research dealing with pathophysiology of the disease. Although urine is considered sterile, recent studies dealing with microbiome have proposed different ideas. UTIs have typically been considered as extracellular infections, but recently, uropathogenic Escherichia coli (UPEC) has been shown to bind and replicate in the urothelium to make intracellular bacterial communities. Binding UPECs might proceed in many ways including extracellular expulsion for clearance or survival and quiescent intracellular reservoirs that can cause rUTI. Moreover, it is also suggested that other important factors, such as lipopolysaccharide and multimicrobial infection, can be the cause of rUTI. This review article reveals a key mechanism of recurrence and discusses what makes a pathway of resolution or recurrence in a host after initial infection.

4.
International Neurourology Journal ; : 192-201, 2021.
Article in English | WPRIM | ID: wpr-891097

ABSTRACT

Urinary tract infections (UTIs) are the most common infectious disease and are mainly caused by Escherichia coli. In this review, we introduce the current concept of recurrent UTI (rUTI) based on recent research dealing with pathophysiology of the disease. Although urine is considered sterile, recent studies dealing with microbiome have proposed different ideas. UTIs have typically been considered as extracellular infections, but recently, uropathogenic Escherichia coli (UPEC) has been shown to bind and replicate in the urothelium to make intracellular bacterial communities. Binding UPECs might proceed in many ways including extracellular expulsion for clearance or survival and quiescent intracellular reservoirs that can cause rUTI. Moreover, it is also suggested that other important factors, such as lipopolysaccharide and multimicrobial infection, can be the cause of rUTI. This review article reveals a key mechanism of recurrence and discusses what makes a pathway of resolution or recurrence in a host after initial infection.

5.
International Neurourology Journal ; : 222-230, 2020.
Article in English | WPRIM | ID: wpr-834374

ABSTRACT

Stress urinary incontinence (SUI) is a highly prevalent health condition that significantly impacts the quality of life. Traditional methods of treatment for SUI, such as pubovaginal sling and Burch colposuspension, have been replaced by the midurethral sling because of its high efficacy, low complication and morbidity rates, and short learning curve. Although multiple behavioral and operative treatments exist, midurethral slings are the gold standard for the treatment of SUI in women. However, several reports have raised concerns about complications caused by the synthetic mesh used in midurethral slings. Therefore, surgical treatment for SUI in women must be chosen with care, taking into account potential complications. Herein, we review the current safety issues pertaining to the use of meshes, the efficacy of traditional surgeries, old and new midurethral slings, and recent data comparing the efficacy and safety of different surgical options. This review is aimed at developing practical guidelines for choosing surgical options for women with SUI.

6.
Biomedical Engineering Letters ; (4): 351-358, 2019.
Article in English | WPRIM | ID: wpr-785518

ABSTRACT

Hearing loss is very common and economically burdensome. No accepted therapeutic modality for sensorineural hearing loss is yet available; most clinicians emphasize rehabilitation, placing hearing aids and cochlear implants. Photobiomodulation (PBM) employs light energy to enhance or modulate the activities of specific organs, and is a popular non-invasive therapy used to treat skin lesions and neurodegenerative disorders. Efforts to use PBM to improve hearing have been ongoing for several decades. Initial in vitro studies using cell lines and ex vivo culture techniques have now been supplanted by in vivo studies in animals; PBM protects the sensory epithelium and triggers neural regeneration. Many reports have used PBM to treat tinnitus. In this brief review, we introduce PBM applications in hearing research, helpful protocols, and relevant background literature.


Subject(s)
Animals , Cell Line , Cochlear Implants , Culture Techniques , Epithelium , Hearing Aids , Hearing Loss , Hearing Loss, Sensorineural , Hearing , In Vitro Techniques , Low-Level Light Therapy , Neurodegenerative Diseases , Regeneration , Rehabilitation , Skin , Tinnitus
7.
Experimental & Molecular Medicine ; : e440-2018.
Article in English | WPRIM | ID: wpr-914286

ABSTRACT

We recently reported that adeno-associated virus serotype 1 (AAV1) transduction of murine nigral dopaminergic (DA) neurons with constitutively active ras homolog enriched in brain with a mutation of serine to histidine at position 16 [Rheb(S16H)] induced the production of neurotrophic factors, resulting in neuroprotective effects on the nigrostriatal DA system in animal models of Parkinson’s disease (PD). To further investigate whether AAV1-Rheb(S16H) transduction has neuroprotective potential against neurotoxic inflammation, which is known to be a potential event related to PD pathogenesis, we examined the effects of Rheb(S16H) expression in nigral DA neurons under a neurotoxic inflammatory environment induced by the endogenous microglial activator prothrombin kringle-2 (pKr-2). Our observations showed that Rheb(S16H) transduction played a role in the neuroprotection of the nigrostriatal DA system against pKr-2-induced neurotoxic inflammation, even though there were similar levels of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1-beta (IL-1β), in the AAV1-Rheb(S16H)-treated substantia nigra (SN) compared to the SN treated with pKr-2 alone; the neuroprotective effects may be mediated by the activation of neurotrophic signaling pathways following Rheb(S16H) transduction of nigral DA neurons. We conclude that AAV1-Rheb(S16H) transduction of neuronal populations to activate the production of neurotrophic factors and intracellular neurotrophic signaling pathways may offer promise for protecting adult neurons from extracellular neurotoxic inflammation.

8.
Experimental Neurobiology ; : 266-277, 2017.
Article in English | WPRIM | ID: wpr-18846

ABSTRACT

Silibinin, an active constituent of silymarin extracted from milk thistle, has been previously reported to confer protection to the adult brain against neurodegeneration. However, its effects against epileptic seizures have not been examined yet. In order to investigate the effects of silibinin against epileptic seizures, we used a relevant mouse model in which seizures are manifested as status epilepticus, induced by kainic acid (KA) treatment. Silibinin was injected intraperitoneally, starting 1 day before an intrahippocampal KA injection and continued daily until analysis of each experiment. Our results indicated that silibinin-treatment could reduce seizure susceptibility and frequency of spontaneous recurrent seizures (SRS) induced by KA administration, and attenuate granule cell dispersion (GCD), a morphological alteration characteristic of the dentate gyrus (DG) in temporal lobe epilepsy (TLE). Moreover, its treatment significantly reduced the aberrant levels of apoptotic, autophagic and pro-inflammatory molecules induced by KA administration, resulting in neuroprotection in the hippocampus. Thus, these results suggest that silibinin may be a beneficial natural compound for preventing epileptic events.


Subject(s)
Adult , Animals , Humans , Mice , Brain , Dentate Gyrus , Epilepsy , Epilepsy, Temporal Lobe , Hippocampus , Kainic Acid , Milk Thistle , Neuroprotection , Seizures , Silymarin , Status Epilepticus
SELECTION OF CITATIONS
SEARCH DETAIL